




## Easy approach to 3-benzylimino-2-pyrrolidinones from 3-chloro-4-chloromethyl-2-pyrrolidinones

Franco Ghelfi,\* Gianluca Ghirardini, Emanuela Libertini, Luca Forti and Ugo M. Pagnoni Dipartimento di Chimica dell'Università, Via Campi 183, I-41100, Modena, Italy

Received 14 July 1999; accepted 22 September 1999

## **Abstract**

3-Benzylimino-2-pyrrolidinones can be prepared in good yield by heating 3-chloro-4-chloromethyl-2-pyrrolidinones, benzylamine and NaI in THF at 80°C. An *endo*-dehydrohalogenation followed by a  $SN_2$ ' substitution on the intermediate allyl chloride, and finally a shift of the *exo*-double bond to  $\Delta^3$  with attendant tautomerization, appears to be the most probable reaction mechanism. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: amino acids; amino acid derivatives; imines; lactams; pyrrolidinones.

3-Amino-2-pyrrolidinones are appealing structures that are capturing the attention of many researchers. The interest is stimulated by their biological activity and their use as building-blocks for conformationally-constrained peptides: and indeed, pharmaceutically-active compounds with this substructure frame are well-known. 3-Amino- $\gamma$ -lactams can also be considered derivatives of  $\alpha, \gamma$ -diaminoacids, which are substances found in natural products, like ornithine, polymyxin and aerosporin. Amoreover, appendages important for increasing the activity of antibacterial drugs, such as the C-7 substituent of quinolone agents, could easily be obtained by reduction of the 3-amino-2-pyrrolidinone nucleus to 3-amino-pyrrolidine.

Cyclization of glycinyl radical, generated by irradiation of modified dipeptides <sup>1 a</sup> or through the protection/radical translocating group, <sup>1 b</sup> and Raney-Ni catalyzed hydrogenation of 1-pyrazoline-3-carboxylic acid derivatives <sup>1 c</sup> are the most recent methods devised for synthesizing 3-amino-2-pyrrolidinones. Here, we report an efficient one-pot conversion of 3-chloro-4-chloromethyl-2-pyrrolidinones to 3-imino-2-pyrrolidinones. Owing to the easy reduction of the imino group<sup>6</sup> and the selectivity and efficiency of the nucleophilic addition of organometallic reagents to the C=N bond, <sup>7</sup> our proposal can be viewed as an alternative and versatile route to 3-amino-γ-lactams.

Recently, we have reported the use of CuCl-TMEDA as a promoter for halogen atom transfer via radical rearrangement of N-allyl-N-protected-2,2-dihaloamides to 2-pyrrolidinones.<sup>8</sup> With the aim

<sup>\*</sup> Corresponding author. Fax: 059-373543; e-mail: ghelfi@pascal.unimo.it

of preparing Freidinger dipeptides,<sup>2</sup> we have synthesized in good yields *N*-alkyl-carboxymethyl-3-chloro-4-chloromethyl-2-pyrrolidinones (Scheme 1), which are potential candidates as conformationally constrained segments.

Scheme 1. (a) Allylamine,  $Et_3N$ , DMSO, rt; (b) Dichloroacetylchloride,  $Et_3N$ ,  $CH_2Cl_2$ ,  $0^{\circ}C$ ; (c) CuCl/TMEDA 20%,  $CH_3CN$ ,  $80^{\circ}C$ , argon

To replace the more mobile endo-chlorine<sup>9</sup> with a nucleophilic nitrogen source, several protocols were followed, but the results were generally unsatisfactory. However, when 5a was treated with benzylamine (3 equiv.) and NaI in THF at  $80^{\circ}$ C, we observed formation of the 3-benzylimino derivative 6a, as a single anti stereoisomer, in good yields (Scheme 2). Good results were also obtained when using N-protections of different sizes 5b and 5c (Table 1), whereas when replacing the C(3)-H with a C(3)-CH<sub>3</sub> (5d), the major product isolated, albeit in modest yields (conv. 56%, yield 26%) was the N-benzyl-4-benzylaminomethyl-3-methyl-3-pyrrolin-2-one 7. This clearly rules out a 1,3-shift of the C(3) substituent in the conversion of 5 to 6. It is likely that the reaction proceeds through an endo-dehydrohalogenation followed by a  $SN_2$  substitution on the intermediate allyl chloride and a final shift of the exo-double bond to  $\Delta^3$  with attendant tautomerization.

Scheme 2.

The easy elimination of 3-chloro-4-methyl-2-pyrrolidinone to the corresponding 3-pyrrolin-2-one under the same reaction conditions (conv. 100%, yield 76%), in contrast to the more difficult dehydrohalogenation of the 4-chloromethyl-2-pyrrolidinone (after 24 h, conv. 33%, mixture of dehydrohalogenated and substituted adducts), supports the previous hypothesis.

Table 1
Reaction of benxylamine with 5

| R'                                                   | R''             |    | Yield (%)a        |
|------------------------------------------------------|-----------------|----|-------------------|
| CH <sub>2</sub> COOCH <sub>2</sub> CH <sub>3</sub>   | Н               | a  | 67                |
| CH <sub>2</sub> COOCH(CH <sub>3</sub> ) <sub>3</sub> | H               | b  | 65                |
| $CH_2(C_6H_5)$                                       | Н               | c  | 75                |
| $CH_2(C_6H_5)$                                       | CH <sub>3</sub> | d  | 26 <sup>b,c</sup> |
| a) Yield of isolated                                 | product;        | b) | N-benzyl-4-       |

benzylaminomethyl-3-methyl-3-pyrrolin-2-one 7; c) GC value.

## Acknowledgements

We thank the CNR (Rome) and the Ministero della Università e della Ricerca Scientifica e Tecnologica (MURST) for financial assistance.

## References

- 1. (a) Sauer, S.; Schumacher, A.; Barbosa, F.; Giese, B. Tetrahedron Lett. 1998, 39, 3685-3688. (b) Rancourt, J.; Gorys, V.; Jolicoeur, E. Tetrahedron Lett. 1998, 39, 5339-5342. (c) Bartels, A.; Liebscher, J. Synth. Commun. 1999, 29, 193-199.
- (a) Gante, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1699-1720.
   (b) Acton III, J. J.; Brian, J. Tetrahedron Lett. 1996, 37, 4319-4322.
- 3. Rowley, M.; Leeson, P. D.; Williams, B. J.; Moore, K. W.; Baker, R. Tetrahedron 1992, 48, 3557-3570.
- 4. Wilkinson, S. J. Chem. Soc. 1951, 106, 104-108.
- 5. Yoshida, T.; Takeshita, M.; Orita, H.; Kado, N.; Yasuda, S.; Kato, H.; Itho, Y. Chem. Pharm. Bull. 1996, 44, 1128-1131.
- (a) Verdaguer, X.; Lange, U. E. W.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1998, 37, 1103–1107.
   (b) Varma, R. S.; Dahiya, R. Tetrahedron 1998, 54, 6293–6298.
   (c) Ranu, B. C.; Sarkar, A.; Majee, A. J. Org. Chem. 1997, 62, 1841–1842.
- 7. Bloch, R. Chem. Rev. 1998, 98, 1407-1438.
- 8. Ghelfi, F.; Bellesia, F.; Forti, L.; Ghirardini, G.; Grandi, R.; Libertini, E.; Montemaggi, M. C.; Pagnoni, U. M.; Pinetti, A.; De Buyck, L.; Parsons, A. F. Tetrahedron 1999, 55, 5839-5852.
- 9. Silvestri, V. Thesis, Università degli Studi di Modena, 1999.
- 10. Synthesis of *N*-ethyl-carboxymethyl-3-benzylimino-4-methyl-2-pyrrolidinone: *N*-ethyl-carboxymethyl-3-chloro-4-chloromethyl-2-pyrrolidinones (0.254 g, 1 mmol) and NaI (0.15 g, 1 mmol) were weighed in a Schlenk tube; then THF (5 ml) and benzylamine (0.321 g, 3 mmol) were added by syringe under argon. The mixture was stirred at 80°C and after 24 h diluted with H<sub>2</sub>O (5 ml), and extracted with CH<sub>2</sub>Cl<sub>2</sub> (2×6 ml). The organic layer was dried over MgSO<sub>4</sub> and evaporated. The crude 6a was purified by silica gel chromatography, using petroleum ether (bp 40–60°C)/diethyl ether gradient; yield ~70%. IR (film): v=1745 and 1680 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ=1.28 (3H, t, J=7.1 Hz, CH<sub>3</sub>CH<sub>2</sub>O), 1.36 (3H, d, J=7.2 Hz, CH<sub>3</sub>CHCH<sub>2</sub>), 2.37 (1H, dd, J=1 8, 7.7 Hz, CH<sub>3</sub>CHCH<sub>2</sub>), 2.98 (1H, dd, J=7.7, 8.8 Hz, CH<sub>3</sub>CHCH<sub>2</sub>), 3.30 (1H, m, CH<sub>3</sub>CHCH<sub>2</sub>), 4.21 (2H, q, J=7.1 Hz, CH<sub>3</sub>CH<sub>2</sub>O), 4.40 (2H, s, CH<sub>2</sub>COO), 4.68 (2H, m, benzyl H), 7.22–7.40 (5H, m, aromatic H). MS (EI, 70 eV) *m/z*: 288 (82%); 259 (7); 201 (32); 187 (22); 106 (13); 91 (100). Found: C, 66.7; H, 7.1; N, 9.6. C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub> requires: C, 66.65; H, 6.99; N, 9.72. Oil. The *anti* stereochemistry was assigned by NOE between the methyl on C(4) and the CH<sub>2</sub> linked to the imino group.